Биологи приблизились к созданию искусственных форм жизни

Возможно ли создание полноценной синтетической формы жизни? Биолог Энтони Хосе ввел концепцию клеточного кода, который необходимо знать, чтобы получить искусственный организм. «Лента.ру» рассказывает о выводах исследователя, изложенных в препринте, опубликованном в репозитории bioRxiv.

Ученые только начинают получать синтетические формы жизни, собирая геномы одноклеточных микроорганизмов заново. Так, в марте 2016 года в журнале Science была опубликована статья, описывающая создание бактерии микоплазмы с минимально возможным количеством генов. Для этого в клетку-реципиент с разрушенной ДНК поочередно встраивались фрагменты модифицированного генома, почти в два раза меньше оригинального.
В 2017 году американские исследователи из Университета Джонса Хопкинса получили дрожжи с синтетическими хромосомами, в которых были убраны дефектные и бесполезные гены. Кроме того, ученые взломали сам генетический код, поменяв триплеты нуклеотидов TAG на TAA. Это позволило организмам избавиться от лишнего фермента, обслуживающего кодоны TAG.
Если одни исследователи идут по пути создания одноклеточных, свободных от генетического мусора, то другие пытаются поменять сам способ, которым последовательность ДНК кодирует белки. Пока в этой области успехи очень скромные. Все, что удалось сделать, — это обогатить ДНК-алфавит. К четырем буквам-нуклеотидам (A, T, G, C) добавилось еще несколько. В новой работе, опубликованной в Proceedings of the National Academy of Sciences, рассказывается, как международная группа исследователей встроила в геном кишечной палочки Escherichia coli синтетические нуклеотиды X и Y. Хотя подобное уже делалось, ученые добились того, что бактерии успешно размножались и сохраняли в своей ДНК искусственную часть.
Однако это только первый шаг на пути к полноценному синтетическому организму. Следующий этап — заставить синтетические нуклеотиды кодировать аминокислоты. У E.coli нуклеотиды X и Y находились в «безопасной» части генома, то есть вне кодирующих последовательностей генов. Иначе новые «буквы» нарушили бы процесс синтеза белка. Клетка бы просто не знала, какой аминокислоте соответствовал кодон ATX или YGC. Биологам еще следует создать новую транспортную РНК, способную распознать такие триплеты и вставить определенную аминокислоту в растущую цепь пептида.
Даже в этом случае подобный организм лишь с натяжкой можно назвать синтетическим. Однако понятны дальнейшие шаги. Искусственный организм будет иметь не только новые нуклеотиды, но и аминокислоты, которые редки или вообще не встречаются внутри клетки. Известно, что все разнообразие триплетов нуклеотидов кодирует лишь 20 стандартных аминокислот. Некоторые другие аминокислоты, например селеноцистеин (содержит селен), встраиваются в белок при специфичных условиях. Дополнительные буквы генетического кода позволят обогатить белок и создать кодоны, соответствующие новым аминокислотам.
Несмотря на все успехи синтетической биологии, специалисты еще не знают точно, какая информация важна для получения организма с заданными свойствами. ДНК — лишь отправная точка. Все клетки многоклеточного животного или растения содержат один и тот же геном, однако в процессе развития организма клетки дифференцируются, то есть начинают выполнять различные функции. Важную роль в этом играет эпигенетическая регуляция, когда какие-то соединения выключают или активируют определенные гены. В результате одна клетка, к примеру, превращается в нейрон, а другая — в фибробласт.

Источник: Lenta.ru - https://lenta.ru/articles/2017/06/20/life_code